Stéphanie DUROT

Maître de Conférences

email: Stéphanie Durot

orcid: 0000-0001-8815-0422

  • Research interests

Molecular chemistry – Supramolecular chemistry – Coordination chemistry – Molecular cages – Molecular machines – Rotaxanes – Molecular recognition – Synthesis – Homogeneous catalysis – Bioinorganic chemistry

  • Academic qualifications

1996-2000:      Student of the Chemistry Department of the « Ecole Normale Supérieure de Cachan », a prestigious University.

1999:               Agregation (competitive high level national teacher exam) Chemistry and Physics.

2000:               Bachelor in Chemistry, Bioinorganic Systems, University Paris XI (Orsay).

2000-2003:      PhD in Chemistry with Pr. J.-P. Mahy and Dr. C. Policar, University Paris XI.

2022:               Habilitation à Diriger des Recherches
Université de Strasbourg, Institut de Chimie, CNRS – UMR 7177 (Strasbourg, France)
“From bioinspired systems to rotaxanes and molecular cages: synthesis and properties”

  • Position 

2003-2005:     Postdoctoral researcher with Pr. J.-L. Pierre, University J. Fourier, Grenoble.

2005-2009 :    Maître de Conférences (Assistant Professor) at the University Louis Pasteur of Strasbourg in the group of Dr. J.-P. Sauvage.

2010- :            Assistant Professor at the University of Strasbourg in the group of Pr. V. Heitz.

  • Awards, Distinctions, funded projects

Contract ANR-14-CE06-0010: Agence Nationale de la Recherche (ANR), young investigator program, «  Switchable molecular cages as catalysts for CO2 valorisation« . Coordinator : S. Durot.

« Accueil en délégation CNRS » and « Congé pour Recherche et Conversion Thématique » temporary assignments of teacher-researchers (teaching cessation  for 1 year full time in order to devote time to a research activity) in 2021-2022 and 2011-2012.

« Accueil en délégation CNRS »: temporary assignments of teacher-researchers « accueil en Délégation CNRS » (teaching cessation  for 1 year full time in order to devote time to a research activity approved by the CNRS) in 2011-2012.

Front cover of the volume 2005 n°14 de Eur. J. Inorg. Chem., 2005.

  • Publications
  • 2022

26. Photophysical and Computational Insights into Ag(I) Complexation of Porphyrinic Covalent Cages Equipped with Triazoles-Incorporating Linkers
D. Sanchez-Resa, I. Daidone, R. Djemili, S. Adrouche, S. Durot, V. Heitz, L. Zanetti-Polzi, B. Ventura J. Phys. Chem. B, 2022, 126, 3450–3459. (Link)

  • 2020

25. Allosteric control of naphthalene diimide encapsulation and electron transfer in porphyrin containers: photophysical studies and molecular dynamics simulation
L. Zanetti-Polzi, R. Djemili, S. Durot, V. Heitz, I. Daidone, B. Ventura, Chem. Eur. J., 2020, 26, 17514-17524 (Link).

24. A flexible bisCo(III) porphyrin cage as a bimetallic catalyst for the conversion of CO2 and epoxides into cyclic carbonates
L. Schoepff, L. Monnereau, S. Durot, S. Jenni, C. Gourlaouen, V. Heitz, ChemCatChem, 2020, 12, 58265833 (Link).

  • 2019

23. Interpretation of Experimental Soret Bands of Porphyrins in Flexible Covalent Cages and in Their Related Ag(I) Fixed Complexes
L. Zanetti-PolziA. AmadeiR. DjemiliS. DurotL. SchoepffV. HeitzB. Ventura, and I. Daidone, J. Phys. Chem. C, 2019, 123, 1309413103 (Link).

22. Positive Allosteric Control of Guests Encapsulation by Metal Binding to Covalent Porphyrin Cages
R. Djemili, L. Kocher, S. Durot, A. Peuronen, K. Rissanen and V. Heitz, Chem. Eur. J. 2019, 25, 1481–1487 (Link). Hot Paper

  • 2017

21. Highlight on the solution processes occurring on silver(I)-assembling porphyrins in the presence of an excess of silver salt
Dang, T. T.; Durot, S.; Monnereau, L.; Heitz, V.; Barbieri, A.; Ventura, B.,  Dalton Trans. 2017, 46, 9375-9381.

20. Chemically induced breathing of flexible porphyrinic covalent cages
Schoepff, L.; Kocher, L.; Durot, S.; Heitz, V., J. Org. Chem. 2017, 82, 5845-5851.

  • 2015

19. A porphyrin coordination cage assembled from four silver(I)triazolyl-pyridine complexes
Ballester P., Claudel M., Durot S., Kocher L., Schoepff L., Heitz V., Chem. Eur. J. 2015, 21, 15339-15348.

18. Control of the cavity size of flexible covalent cages by silver coordination to the peripheral binding sites
Kocher L., Durot S., Heitz V., Chem. Commun. 2015, 51, 13181-13184.

  •  2014

17. Multiporphyrinic cages: architectures and functions
Durot, S., Taesch, J., Heitz, V., Chem. Rev 2014, 114, 8542-8578.

16. Synthesis and Solution Studies of Silver(I)-Assembled Porphyrin Coordination Cages
Durot S., Flamigni L., Taesch J., Dang T. T., Heitz V., Ventura B., Chem. Eur. J. 2014, 20, 9979-9990.

  • 2011

15. Formation of copper(I)-templated [2]rotaxanesusing « click » methodology: influence of the base, the thread and the catalyst
F. Durola, S. Durot*, V. Heitz, A. Joosten, J.-P. Sauvage*, Y. Trolez, J. Inclusion Phenom. MacrocyclicChem.201171, 507-515.

14. Synthesis of [2]-, [3]-, and [4]rotaxaneswhose axis containstwobidentate and twotridentate chelates
J.-P. Collin*, S. Durot*, J.-P. Sauvage*, Y. Trolez, New J. Chem.201135, 2009-2012.

13. Synthesis of [5]RotaxanesContaining Bi- and Tridentate Coordination Sites in the Axis
J.-P. Collin*, S. Durot*, M. Keller, J.-P. Sauvage*, Y. Trolez, M. Cetina, K. Rissanen, Chem. Eur. J.201117, 947-957.

  • 2010

12. From chemicaltopology to molecular machines
J.-P. Sauvage*, J.-P. Collin, S. Durot, J. Frey, V. Heitz, A. Sour, C. Tock, C.R. Chimie201013, 315-328.

11. Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machine
S. Durot*, F. Revieriego, J.-P. Sauvage*, Dalton Trans.201039, 10557-10570.

10. Separation of geometric isomers of a dicopper complex by using a 19F-labeled ligand: dynamics, structures, and DFT calculations
S. Durot, L.H. Hossain, S. Hamman, H. Jamet, M. Orio, I. Gautier-Luneau, D. Luneau, C. Philouze, J.-L. Pierre, C. Belle, Inorg. Chem.201049, 7832-7840.

9. Synthesis of [5]Rotaxanes Containing Bi- and Tridentate Coordination Sites in the Axis
J-P. Collin*, S. Durot*, M. Keller, J.-P.Sauvage*, Y.Trolez, M. Cetina, K. Rissanen, Chem. Eur. J.2010, DOI: 10.1002/chem.201002220.

  • 2008

8. Synthesis of new copper(I)-complexed rotaxanes via click chemistry
S. Durot, P. Mobian, J.-P. Collin, J.-P. Sauvage, Tetrahedron200864(36), 8496-8503.

  • 2005

7. A pulse radiolysis study of catalytic superoxide radical dismutation by a manganese(II) complex with an N-tripodal ligand
S. Durot, C. Policar, F. Cisnetti, F. Lambert, J.-P. Renault, G. Pelosi, G. Blain, H. Korri-Youssouffi, J.-P. Mahy, Eur. J. Inorg. Chem.2005(17), 3513-3523.

6. Series of Mn complexes based on N-centered ligands and superoxide–reactivity in an anhydrous medium and SOD-like activity in an aqueous medium correlated to MnII/MnIII redox potentials
S. Durot, F. Lambert, J.-P. Renault, C. Policar, Eur. J. Inorg. Chem.2005(14), 2789-2793.

5. Copper(II) and Cobalt(III) pyridoxal thiosemicarbazone complexes with nitroprusside as counterion: syntheses, electronic properties, and antileukemic activity
M. Belicchi-Ferrari, F. Bisceglie, C. Casoli, S. Durot, I. Morgenstern-Badarau, G. Pelosi, E. Pilotti, S. Pinelli, P. Tarasconi, J. Med. Chem.200548(5), 1671-1675.

  • 2004

4. Imidazole and imidazolate iron complexes: on the way for tuning 3D-structural characteristics and reactivity. Redox interconversions controled by protonation state
F. Lambert, C. Policar, S. Durot, M. Cesario, L. Yuwei, H. Korri-Youssoufi, B. Keita, L. Nadjo, Inorg. Chem.200443, 4178-4188.

  • 2003

3. Structural and magnetic properties of carboxylato-bridged manganese(II) complexes involving tetradentate ligands: discrete complex and 1D polymers. Dependence of J on the nature of the carboxylato bridge
S. Durot, C. Policar, G. Pelosi, F. Bisceglie, T. Mallah, J.-P. Mahy, Inorg. Chem.200342, 8072-8080.

  • 2001

2. New Mn(II) complexes with an N/O coordination sphere from tripodal N-centered ligands – Characterization from solid state to solution and reaction with superoxyde in non-aqueous and aqueous media
C. Policar, S. Durot, F. Lambert, M. Cesario, F. Ramiandrasoa, I. Morgenstern-Badarau, Eur. J. Inorg. Chem.2001, 1807-1817.

  • 2000

1. TTF based charge transfer salts of [M(NCS)4(C9H7N)2]– where M=Cr, Fe and C9H7N=isoquinoline; observation of bulk ferrimagnetic order
S.S.Turner, C. Michaut, S. Durot, P. Day, T. Gelbrich, M. B. Hursthouse, J. Chem. Soc., Dalton Trans.2000, 905-909.